| Both sides previous revisionPrevious revisionNext revision | Previous revision |
| public:calculator:guides:41z_module [13/02/25 07:48 GMT] – [Quick Ref] john | public:calculator:guides:41z_module [09/01/26 19:38 GMT] (current) – [ZK?YN (UPDATE 5/8/22)] john |
|---|
| * The <key>'Σ+'</key> now activates a //complex number// function when it's pressed - for one operation only | * The <key>'Σ+'</key> now activates a //complex number// function when it's pressed - for one operation only |
| |
| | ==== Module ==== |
| |
| | * {{ :public:calculator:info:41z_bs_2x2_2_.zip | Fixed version Sept. 2024}} |
| | |
| | |
| | ==== User Guide ==== |
| | |
| | * {{ :public:calculator:guides:41z_deluxe_manual_1_.pdf |}} |
| ==== ZK?YN (UPDATE 5/8/22) ==== | ==== ZK?YN (UPDATE 5/8/22) ==== |
| |
| ++++ | ++++ |
| |
| === The rest of the guide was written without the use of full-time ZKEYS in mind === | ** |
| | The rest of the guide was written without the use of full-time ZKEYS in mind |
| | ** |
| |
| * in the forum thread [[https://forum.swissmicros.com/viewtopic.php?f=26&t=4029]] dealing with the bug in the ''deluxe'' version Angel recommended I use the ''ΣZL'' method - so I'll try to stick to this | * in the [[https://forum.swissmicros.com/viewtopic.php?f=26&t=4029 | forum thread]] dealing with the factorization bug in the ''deluxe'' version Angel recommended I use the ''ΣZL'' method. He fears that occasionally ''ZKEYS'' might be broken with incorrect/missing ''USER'' assignments - so I'll try to stick to the normal ''ΣZL'' method. |
| |
| |
| * <key>ZCONJ</key> = <key>Z</key> <key>SHIFT</key> <key>CHS</key> (complex conjugate) | * <key>ZCONJ</key> = <key>Z</key> <key>SHIFT</key> <key>CHS</key> (complex conjugate) |
| * <key>Z ^ X</key> = <key>Z</key> <key>EEX</key> | * <key>Z ^ X</key> = <key>Z</key> <key>EEX</key> |
| * <key>Z ^ 1/X</key> = <key>Z</key> <key>Z</key> <key>EEX</key> (root(s) of complex number) : see [[#Cubic Roots of -8]] | * <key>Z ^ 1/X</key> = <key>Z</key> <key>Z</key> <key>EEX</key> (root(s) of complex number) : see [[#Cubic Roots]] |
| * <key>ZNXTNRT _</key> = <key>Z</key> <key>Z</key> <key>SHIFT</key> <key>'√x'</key> ''NEXT ROOT'' enter the root you want | * <key>ZNXTNRT _</key> = <key>Z</key> <key>Z</key> <key>SHIFT</key> <key>'√x'</key> ''NEXT ROOT'' enter the root you want |
| | * <key>ZWDOT</key> = <key>Z</key><key>Z</key><key>'.'</key> : dot product of 2 vectors/complex numbers |
| | * <key>ZWCROSS</key> = <key>Z</key><key>Z</key><key>2</key> : **Magnitude** of the Cross Product of 2 vectors/complex numbers (no sign) |
| | * <key>ZWDET</key> = <key>Z</key><key>Z</key><key>7</key> : Determinant (Cross Product) of 2 vectors/complex numbers, incl. sign/direction |
| ===== Basic Operation ===== | ===== Basic Operation ===== |
| |
| |
| |
| === Z-keys method === | |
| |
| ++++ ZK?YN method | | |
| |
| <key>50</key> <key>ENTER</key> <key>13</key> <key>ENTER</key> | |
| |
| <key>1/x</key> | |
| |
| <key>23</key> <key>ENTER</key> <key>85</key><key>CHS</key> <key>ENTER</key> | |
| |
| <key>1/x</key> | |
| |
| <key>+</key> | |
| |
| <key>1/x</key> | |
| |
| Result : | |
| |
| ''42.72 - j 11.99'' | |
| |
| ++++ | |
| |
| ==== convert to Rectangular ⇔ Polar operation ==== | ==== convert to Rectangular ⇔ Polar operation ==== |
| |
| |
| ==== Cubic Roots of -8 ==== | ==== Cubic Roots ==== |
| | |
| | ===Rectangular=== |
| |
| * enter complex ''real'' number ''-8 + j 0'' | * enter complex ''real'' number ''-8 + j 0'' |
| * <key>8</key> <key>CHS</key> <key>Z</key> <key>Z</key> <key>RCL</key> | * <key>8</key> <key>CHS</key> <key>Z</key> <key>Z</key> <key>RCL</key> |
| * '' -8 + j 0'' | * '' -8 + j 0'' |
| * enter 3 (''goes into the normal X register'') | * enter <key>3</key> (''goes into the normal X register'') |
| * find the result of ''Z↑1/x'' | * find the result of ''Z↑1/x'' |
| * <key>Z</key><key>Z</key><key>EEX</key> | * <key>Z</key><key>Z</key><key>EEX</key> |
| * ''1 - j 1.732'' | * ''1 - j 1.732'' |
| |
| The same can be done in ''POLAR'' format.... | === Polar === |
| |
| * enter complex ''real'' number ''-8 + j 0'' | * enter complex ''real'' number ''-8 + j 0'' |
| * <key>8</key> <key>CHS</key> <key>Z</key> <key>Z</key> <key>RCL</key> | * <key>8</key> <key>CHS</key> <key>Z</key> <key>Z</key> <key>RCL</key> |
| * '' -8 + j 0'' | * '' -8 + j 0'' |
| * <key>Z</key><key>Z</key><key>6</key> | * <key>Z</key><key>Z</key><key>6</key> |
| * ''8 ∠ 180'' | * ''8 ∠ 180'' |
| * enter 3 (''goes into the normal X register'') | * enter <key>3</key> (''goes into the normal X register'') |
| * find the result of ''Z↑1/x'' | * find the result of ''Z↑1/x'' |
| * <key>Z</key><key>Z</key><key>EEX</key> | * <key>Z</key><key>Z</key><key>EEX</key> |